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SUMMARY

This report present the research results obtained from the research grant entitled

"Active Control of Robot Manipulator Compliance, "funded by the Goddard Space Flight

Center (NASA) under the Grant Number NAG 5-780, for the period between August 1st,

1989 and February Ist, 1990.

In this report, we present a trajectory control scheme whose design is based on learn-

ing theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robolic

assembly of NASA hardwares in space: The control scheme consists of two control sys-

tem.s: the feedback control system and the learning control system. The feedback control

system is designed using the concept of linearization about a selected operating point, and

the method of pole placement so that the closed-loop linearized system is stabilized. The

learning control scheme consisting of PD-type learning controllers, provides additional

inputs to improve the end-effector performance after each trial. Experimental studies

performed on a _ DOF cnd-effcctor built at CUA, for 3 tracking casc3 show that actual

trajectories approach desired trajectories as the number of trials increases. In fact, the

tracking errors are substantially reduced only after 5 trials.



1 INTRODUCTION

Repeatable tasks in a factory or in space can be perform_'d by a robot manipulator that

is taught off-line via a so-called teaching and playback scheme or by a manipulator that

is equipped with an on-line learning ability produced by a self learning control ,,chcmc

without human supervision. Learning control theory which was originated from the con-

cept suggesting that robot manipulators like human beings can learn from nwasurement

data of previous operations in order to improve their performance in future operations,

has attracted control researchers' attention since many years [1] and recently has been

considered for control of robot manipulators [2]-[10]. Control of mechanical arms using

learning control theory was considered by Uchiyama [2] who proposed one of the first

learning control schemes to be applied to robotics. Realizing that it is difficult to obtain

fidl descriptions of robot manipulator dynamics due to their unknown characteristics

such as friction, backlash, and non-rigidity, etc, Arimoto and his co-workers [3] devel-

oped a so-called Betterment Procesa to provide manipulators with a learning ability.

The betterment process is based on a simple iteration rule that generates a current

actuator input which is better than the previous one under the condition that a desired

output is specified. Applications of the betterment process to linear time-invariant sys-

tems and to a class of nonlinear systems are presented in [4]. The concept of betterment

process was finther developed and applied into a learning-based position/force control

scheme [5] which was experimentally shown to be very effective in polishing a curved

object. Based on the principle of the betterment process, three types of learning control

schemes were proposed by Arimoto and others in the work presented in [6] which also

addressed the convergence problem of the proposed schemes. The synthesis of repetitive

control systems for a subclass of systems whose outputs are controlled to follow periodic

reference commands was considered by Hard and his co-workers [7]. Relaxing the rank

condition imposed by Arimoto's learning control scheme [3] and using state variable

errors, Togai and Yamano [8] introduced a discrete learning algorithm to control dis-

crete systems performing repetitive operations. They show that the discrete approach

is generally more advantageous than the analog approach used in [3]-[61 . Based on ex-

plicit modeling of robot manipulators and using inverse manipulator model, Atkeson

and MeIntyre [9] proposed a learning algorithm to reduce trajectory following errors of

repetitive robot motions. Nguyen and others [10] combined the concepts of hybrid con-

trol and learning control to design a learning-based hybrid control scheme for controlling

force and position in part assembly problems.

In this report, we consider the application of learning control theory into Cartesian

trajectory control of a 6 DOF robot end-effector built at the Goddard Space Flight

Center (NASA) to study telerobotie assembly of NASA hardwares [11]. In particular,

a learning-based trajectory control scheme consisting of a feedback control system and

a learning control system is presented. The feedback control system ensures that the

linearized model of the closed-loop system is stable while the learning system provides

additional inputs to the end-effector actuators so that the responses can be improved



after each trial. Using the methods of linearization about a desired pattern and pole

placement, we will show that proper selection of the learning control system gains will

provide the end-effector with an on-line learning ability so that it can autonomously

reduce its errors as the number of trials increases. The performance of the developed

learning control scheme will be investigated experimentally on a 2 DOF end-effector

and investigation results will be discussed.

2 THE ROBOT END-EFFECTOR

Recently a 6 DOF end-eff(,ctor was designed mad built at NASA/Goddard Sl)ace Flight

Center to serve as a testbed for studying the feasibility of autonomous assembly of

parts in a telerobotic operation in space. As illustrated in Figure 1, the end-effector

resembles the structure of a Stewart platform [13], and mainly consists of a payload

platform, a base platform, six linear actuators and a gripper. The upper movable

payload platform is coupled to the base platform by six axially extensible rods and

recirculating ballscrews driven by dc motors are used to provide the extensibility. The

motion of the upper payload platform is produced by the combination of extending

and shortening the actuator lengths. Each end of the actuator links is mounted to

the platforms by 2 rotary joints with intersecting and perpendicular axes. Solutions

of forward and inverse kinematic problems and equations of motion of the above end-

effector can be found in [11]-[12].

3 THE LEARNING CONTROL SCHEME

Figure 2 presents the learning-based control scheme proposed to control the motion of

the end-effector presented in previous section. The control scheme mainly consists of

2 systems: the feedback control system and the learning control system. The feedback

control system improves the end-effector dynamics in terms of system stability and

tracking quality and the learning control system reduces the transient a_ld steady-state

errors of the end-effector responses after each trial.

In the feedback control system, linear voltage differential transformers (LVDT)

serving as position sensors are mounted along the end-effector actuators to measure

their lengths li for i=1,2,...,6, compactly represented by the joint position vector 1

which is then compared with the desired joint position vector 1_ to generate the joint

error vector 1,. Since closed-form solutions exist for the inverse kinematic problem of

a closed-kinematic chain mechanism [11], inverse kinematics is employed in the above

control scheme to transform desired Cartesian position 1 vector xd into the corresponding

desired joint position corresponding la. The joint errors will then serve as the inputs

to the feedback controller whose gains are designed such that the end-effector tracks a

set of desired Cartesian position trajectories with minimum settling time and minimum

aln this report, Cartesian position implies both position and orientation.
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steady-state errors. Here settling time is defined asthe time the controller would need
to track the actual response to reach about 5 percent,of the deviation between the
desiredand actual tim(" trajectories. Steady-stateerror denotesthe constant deviation

between tile desired and actual spatial Cartesian paths after the response has setth'd. In

[14], lincarization and pole placement methods were employed to design the controller

gains and satisfactory results were obtained. The tracking performance of the end-

effcctor was further improved in [15] where the controller gains were designed using the

concepts of model reference adaptive control and Lyapunov theory. Simulation results

showed that although the responses were substantially improved in [15], there were

still some minor difference between the desired and actual responses due to dynamic

interfercnccs caused by the nonlinearity of the end-effcctor dynamics. For tasks that arc

repetitive, the transient and steady-state responses can be further reduced by equipping

the end-cffector with a learning ability realized by a learning control system that can

"learn" from the joint position errors during a trial and provide additional signals to

improve the end-cffcctor performance during the next trial.

Figure 3 illustrates the structure of the learning control system that mainly consists

of a PD-typc learning controller and a large-scale integrated random access memory

(LSI RAM). The learning process is described in the following scheme:

uk, l = uk + _I'(QI_ + fli_) (1)

where uk denotes the output of the learning control system during the kth trial, ,I_ is a

positive definite matrix, oe mid fl are non-negative scalars and

l_ = la-l. (2)

During the kth trial, the information of Uk+l is computed using (1) and stored in

the lower part of the RAM as a set of densely sampled digital data. After the kth triM,

the stored data will be loaded to the upper part of the memory and will be sent to the

actuators during the (k+l)th trial. The lower part of the memory is now empty and

ready to store new data. During the kth trial, the input to the end-effector actuators is

composed of signals coming from the feedback controller, rp, the lem'ning controller, uk

and an auxiliary signal r=, namely

Tk = r_ + Uk + r_. (3)

The auxiliary signal r_ is included in (3) to compensate the end-effector dynamics as

seen later in the design of the controller gains.

4 CONTROL SCHEME DESIGN

Design of the proposed control scheme is performed in three steps: a) linearizing the

end-effector dynamics about ld, b) selecting the controller gains for the feedback control
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system so that the lincarizcd closed-loopcontrol system is stable, and c) selecting the
controller gainsfor the h'arning control systemsothat the differencebetweenthe desired
and actual responseconvergesto zero asthe numl)er of trials increasesto infinity.

The dynamicM equations of the end-effector aregiven by [12]

M(l)i(t) + N(l,i) + G(l) = r(t) (4)

where l denotes the (6xl) joint variable vector containing the length li as its ith row,

for i=1,2,...,6, M(l), N(l,l) and G(I) represent the (6x6) end-effector mass matrix,

the (6xl) centrifugal and Coriolis force vector, and the (6xl) gravitational force vector,

respectively.

Linear|zing (4) about ld, the desired joint variable vector which corresponds to the

Cartesian variable vector xd by using Taylor series expansion and neglecting higher

order terms, wc obtain

M(t)i_(t) + N(t)i(t) + G(t)z(t) + rd(t) = r(t) (5)

where

However we have

z(t) = l(t) - ld(t)

= M(l.)

0 [N(I, i)]N(t) = _ 1.,i_

0 [M(I)i, + N(l,i) + G(ld]ld.|,G(t) = N

re(t) = M(l.)id(t) + N(id, |d) + G(le).

(6)

(7)

(s)

(9)

(10)

r(t) = rp(t) + u(t) + r_(t) (11)

where rp(t), the output of the PD controller of the fecdback control system is given by

r,(t) = K,l_ + Ke|¢ (12)

and Kp and Kd are the controller gain matrices of the PD controller.

Now substituting (11)-(12) into (5) yields

M(t)£(t) + iN(t) + Ke] z(t)+ [G(t) + Kp] z(/) = u(t) (13)

where wc let

and it is noted that

(14)

L(t) = -z(t). (15)
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The system representedby (13) is a linear time-va-D'ing control system which can

be asymptotically stabilized by properly selecting Kv and Ka by using fi, r instance the

eigenvalue assignmen! method in [16].

Using (15), we proceed to rewrite (1) as

uk+,(t) = uk(t) - v [_z_(t) + Zig(t)] (16)

where

uk(t) = M(t)i_k(t) + IN(t) + Kd]/k(t) + [G(t) + Kv] zk(t). (17)

Wc recall from (6) that z(t) denotes the error between the actual joint vector l(t)

and the desired joint vector ld(t). Therefore, to obtain good tracking quality, zd(t), the

desired value for z(t), should bc set to 0. In this case, (16) can be further rewritten as

uk+, = u, + v [_(,_- z,)+ 15(_- z_)]. (18)

Equations (17) and (lS) constitute the general learning scheme of the Cartesian trajec-

tory control scheme.

We proceed to present, the following lemma:

Lemma 1 Consider a class of n-dimensional linear time-varying systems described by

R(t)_'(t) + Q(t)_(t) + P(t)_(t) = r/(t) (19)

where ((t) and rl(t ) are the (n x 1) controlled variable vector and the (n x 1)input vector,

respectively. R(t), Q(t) and P(t) denote (n x n) time-varying matrices whose elements

are continuously differentiable on [0, T] br some positive constant T and R(t) is positive

definite for all t e [0, T]. A learning scheme is defined by

vk+,=v_+ r [_(6- _)+ Z(_ - d_)], (20)

R(t)_'k(t) + Q(t)_l,(t) + P(t)¢k(t) = rlk(t) (21)

_k(0) = _d(0) (k(0) = (d(0) (22)

where or and fl are non-negative constant scalars, _a denotes the desired trajectory for

_k, and r is an (n x n) positive definite matrix.

If rll is continuous, _d is continuously differentiable on [O,T], o_ and 15 are selected

such that 0 < a, t5 < 1, then (k converges to (a uniformly on [0, T] as k --o oe.

The proof of Lemma 1 can be found in [5]. We now present the main result of this

report.

Main Result 1 Consider the robot end-effector whose dynamical equations and lin-

earized model are given by (4) and (5), respectively. If the desired Cartesian trajectory

vector xa is continuously differentiable on [O,T], and 5¢k(0) = ia(0); xk(0) = xd(0),

then the learning control scheme described in (I7) and (I8) can be designed so that the

difference between xk and xa converges to 0 as k --o ee.
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Proof: In [12], we showed that closed-form solutions exist for tile inverse kinematic

problem of closed-kinematic chain mechanism. Therefore from the fact that

la = IK(xa), (23)

where IK denotes the inverse kinematic function of tile end-effector, if xa is continuously

differentiable on [0,T], then so is ld. In this case, using (7)-(9), we observe that M(t),

N(t) and G(t) are also continuously differentiable on [0,T]. Consequently, the matrices

in (17) are all continuously differentiable on [0,T]. In addition,

ik(0) = ik(0)- i.(0) = 0 = zd(0) (24)

zk(O)= Ik(0)- ],,(0)= 0 = z,,(o) (25)
because

L(o) = i_(0); l_(o)= l_(0), (2G)

which are derived from the hypothesis of Main Result. Besides, M(t) is positive definite

on [0,T] because so is M(1). The system represented by (17) is stabilized and conse-

quently u,(t)is continuous on [0,T]. Now comparing (16) and (17) with (20) and (21),

respectively, and applying Lemma 1, if we select o and fl in (18) sudl that 0 < a, fl _< 1,

then zk(t) converges to zd(t) = 0 uniformly on [0,T] as k _ oz. In other words, lk(t)

converges to la(t), or equivalently xk(t) converges to xd(t) uniformly on [0,T] as k _ oz.

The proof of the main result is completed.

5 EXPERIMENTAL STUDY OF 2 DOF CASE

In this section, the proposed learning-based control scheme is implemented to control the

motion of a 2 DOF end-effector showed in Figure 4. The end-effector mainly consists of

2 ball-screw linear actuators driven by de motors and hung below a stationary platform

via pin joints. Position feedback is accomplished by 2 LVDT's mounted along the

actuator links. The end-effector is controlled by a personal computer through a data

acquisition system consisting of an IBM board, an adapter and a software package

called Labtech Notebook. PD controllers, learning controller, inverse kinematics, error

computation and joint force computation are implemented by Labtech Notebook. Based

on the diagram given in Figure 5, the Cartesian position x and y expressed with respect

to a reference coordinate system affixed to the stationary platform are related to the

joint positions 11 and 12 as follows:

Ii 2 _ I/+ d2
x = 2d (27)

and

_4a_l,: - (I, 2 - 122 + d2)2
v = 2d (2s)
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where d is the distance between the pin joints hanging the actuators. The Lagrangian

approach is applied to derive the following equations of motion:

r(0 = M(l,i) [(t) + N(i,i) i(0 + G0, i) (29)

where

r(t)=(rl rs)r; !=(11 /s) r (30)

where ri and li denote the joint force to and the lenght of tile ith actuator for i=1,2,

respectively. Also

with

and

N

M=[m,o]0 77l I

3u

o
3u

G = (al G2) r

(31)

(32)

(33)

{ -,wt,,,[2@,(t, + is)- Is :] }
a, = + td,,,+ 2t,1 ) -

4dl_l_u (34)

{ -mglm[2l_us(t, q-ls)-l,u s] }
C s = --mlg[ 2u2122(lllm q- Isl m + 2_112)- Islm u21

4dl_12u (35)

u, = l_ - l_ + d2; us = l_ - l_ + d2; u = _/4d21_ - u2, (36)

where rnl is the mass of the moving part of the link,rn the total mass of the link, and

Im the fixed length of the actuators and g the gravitational acceleration.

Experiments were performed to study the performance of the proposed learning

control scheme implemented to track the end-effector on three different planar paths.

The experimental results are reported below where in study case we let the cnd-effcctor

repeat the task 5 times.

Case 1: Tracking a Straight Line

The straight line to be followed by the end-effcctor is specified by y = -1.5x- 68 [in cm]

where x(t) = 0.6t + 25.4 [in crn] and experimental results for this case are reported in

Figures 6a-c. Figures 63 and 6b represent the time responses of the horizontal and

vertical errors, respectively with respect to the desired trajectories, of the 1st and 5th

trials while Figure 6c represents the actual and desired planar motions at the 5th trial.

As the results show, the tracking performance was improved substantially at the 5th

trial which brought the maximum horizontal error from 0.87 cm down to 0.35 cm and

the maximum vertical error from 0.47 cm down to 0.20 cm.



Case 2: Tracking a Sinusoidal Path

Tile sinusoidal path to be followed by tile end-effector is described by y = sin(2x -

50) - 83 [in cm I where .r(t) = 0.6t + 25.4 [in cm]. Figures 7a-c report the experinaental

results for this case. Figures 7a and 7b illustrate the time responses of the horizontal

and vertical errors, respectively, of the 1st and 5th trials while Figure 6e represents

the actual and desired planar motions at the 5th trial. We observe that the tracking

performance was improved significantly at the 5th trial which brought the maximum

horizontal error from 0.84 cm down to 0.30 cm and the maximum vertical error from

1.14 cm down to 0.5 cm.

Case 3: Tracking a Circular Path

Figure 8a-c present the experimental results of tracking a circular path specified by

(x - 34) 2 + (y + 83) _ = 16 [in cm] where x(t) = 5sin(-6t and y(t) = 5cos_t. The

time responses of the horizontal and vertical errors are presented in Figures 8a and 8b,

respectively and Figure 8e represents the actual and desired planar motions at the 5th

trial. As the results show, the tracking performance was improved substantially at the

5(h trial which brought the maximum horizontal error from 1.87 cm down to 0.52 cm

and the maximum vertical error from 1.54 cm down to 0.71 em.

In the above experimental study, the following parameters were used:

• End-Effector Parameters: d = 29inches; ml = 0.59kg; rn = 4.5kg

• Feedback Control System: PD controller gains:

= _- ; Kd = 0'"Kp 22 i,, 0]0 7 v°lt'se---_
• in

• Learning Control System:

220 0 ]0 2

1. D__ 19
20'

6 CONCLUSION

A learning-based control scheme was proposed in this report to control the Cartesian

trajectory of a 6 DOF end-effeetor performing assembly tasks that are repetitive. The

learning control scheme consists of a feedback control system that improves the end-

effector dynamics and a learning control system that can "learn" from errors to improve

the end-effector performance after each trial. Linearization about a desired trajectory

was applied to convert the nonlinear equations of motion of the end-effector into a
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linear time-varying systemwhich cm_ be stabilized by properly selecting feedback PD

controller gains by using eigenvalue assignment method. We then showed thai the

learning controller gains can be designed such that the end-effector motion approaches

a desired motion in a repeatable assembly task, as the number of trials increases. Ex-

perimental studies performed on a 2 DOF end-effector showed that the errors converged

as the number of trials increased. In particular, the tracking performance of the end-

effeetor was substantially improved only after 5 trials. Future research activities will

be directed to the investigation of the proposed learning control scheme on the 6 DOF

end-effector using computer simulation and experimentation. Attention should also be

paid to the development of a learning-based control system which consists of an on-line

adaptive feedback control system [15] and an off-line learning control system. Imple-

mentation of a learning-b,x_ed control scheme [10] to control position and force of the 6

DOF end-effector should also be investigated experiment_dly.
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